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Momentum conservation and local field corrections for the response of interacting Fermi gases
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We reanalyzed the recently derived response function for interacting systems in relaxation-time approxima-
tion respecting density, momentum, and energy conservation. We find that momentum conservation leads
exactly to the local-field corrections for both cases respecting only density conservation and respecting density
and energy conservation. This rewriting simplifies the former formulas dramatically. We discuss the small
wave vector expansion and find that the response function shows a high-frequency dependericevbich
allows to fulfill higher-order sum rules. The momentum conservation also resolves a puzzle about the conduc-
tivity, which should only be finite in multicomponent systems.

PACS numbs(s): 05.30.Fk, 21.60.Ev, 24.30.Cz, 24.60.Ky

Recently the improvement of the response function in intwo-component systensince it makes no sense to speak of
teracting quantum systems has regained much intgteggt  conductivity in a single-component system where the con-
This quantity is important in a variety of fields and describesductivity should be infinite. Clearly the Mermin formula
the induced density variation if the system is externally per-does not distinguish these cases and cannot be sufficient to
turbed: sn= YV As an example, for an interacting system describe the response. Therefore we will show that the inclu-
with potentialVV the conductivity can be calculated from the sion of additional momentum conservation will repair this
response function via defect(22) and will lead to a conductivity
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One of the most fruitful concepts to improve the responsgyhich shows indeed for the static limit a diverging behavior
functions including correlations are the local-field correc-in contrast to Eq(4)
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There are two distinguishable cases, the single-component
case where we have to include momentum conservation and
= Xo ' 2 obtain divergent conductivity and the multicomponent case
1+Gxo where we should expect Mermin-like formulas in order to
render the conductivity finite. In order to bring these two
extreme cases together the response function for multicom-
onent systems should be consideféfl
In this paper we want to restrict to the one-component
situation. In Ref[2] we have derived the density, current,
and energy responsg x;, xe Of an interacting quantum sys-

see Refs[1,3,4] and references therein.

On the other hand, there exists an extremely useful for
of the response function when the interactions are abbrevi-
ated in the relaxation-time approximatienrespecting den-
sity conservatiorf5]. One of the advantages of the resulting
Mermin formula(9) is that it leads to the Drude -like form of

the dielectric function in the long wavelength limit tem
w’2) on X 1
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to the external perturbation®* provided the density, mo-
with the plasma frequency,, for the Coulomb potentia¥.  mentum, and energy are conserved. The interacting system
from which follows the conductivity has been described by the quantum kinetic equation for the
density operator in the relaxation-time approximation where

ne’r N the relaxation is considered with respect to the local-density
ne?r m o(w) operator or the corresponding local equilibrium distribution
Reo= ————-= &2 ) (4)  function. This local equilibrium is given by a local chemical
m(1+ ) n +o i potentialu, a local temperature, and a local momentur®
Mw?7 ® of mass motion. These local quantities are specified by the

requirement that the expectation values for density, momen-
However one should note that this formula is valid only fortum, and energy are the same when calculated from a local
the extension to a multicomponent syst¢f] (at least a distribution function or performed with the density operator.

1063-651X/2000/6@3)/43824)/$15.00 PRE 62 4382 ©2000 The American Physical Society



PRE 62 BRIEF REPORTS 4383

Ref.[2] for the inclusion of successively more conservation ﬁ2:
laws in terms of polarization functiori8={I1,11, ,I1¢} and
have the general form

X=P(1-VpP)"* (7) ﬁ4:2(2m)2fidﬂ’f_’;du”ﬂo (13

due to the induced mean fields that can have density—ang,q he density and energy are given by
momentum—dependent Skyrme form.
When we note the free response function or Lindhard po-

The density response functions have been expressed in w
ZmJ d,bL,Ho,

dp

larization function without collisions as = ——
n f(z,n_h)3f0(p)1
dp fo(p+a/2)—fo(p—al2) )
N NPt Pq ® E—f b P 14
™ L = | @ah)?2m o(P). (14
with finite temperature Fermi functiorfs, the inclusion of For the inclusion of additional momentum conservation to
only density conservation leads to the Mermin polarizationformulas(9) or (10) we obtain now a tremendous simplifi-
[5] cation by observing that the formulas given in Regf] can
be rewritten as
IMy(q,w+il7)
119, 0)= . 1 1 1 1 o m _
- - + — — =— - = =
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i (15
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(1-i )gl(w T 9:(0) This shows that the inclusion of momentum conservation
= —lwT

h—l’ © leads to nothing but the local-field correction with the same
form G for both cases, the inclusion of only density conser-
where abbreviations are given below in E¢2). If we in-  vationandadditional energy conservation. We want to point
clude also the energy conservation we obfigthan addi- out that this result is valid for any frequency and tempera-
tional term to Eq.(9) ture. Formula(15) is the main result of this paper since it
leads to a tremendous simplification. To see the advantages

i more clearly we discuss now limiting cases.
91| 0+ p 9:(0) The long wavelength expansion is particularly important
N w)=(1-iwr) e for the classical limit and for the discussion of sum rylég
1

Since the discussion above has shown the advantage of dis-
cussing the inverse polarization function instead of the po-
9 larization function itself we proceed and give the expansion
— w7 [hegl(O)z—hlge(O)] (10) for the inverse polarization function(8), (9), and(10)
hiy(hs=h_.h,)
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where we use the abbreviation M, n@ Tz Ho(a”),
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The different occurring correlation functions can be writ- neP o7 gM_n’L nZ +o(q%),
ten in terms of moments of the usual Lindhard polarization Ch =
function (8) as follows[2]:
n me? 1. 1 1 ng®[9 10E)? o Coldd
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From Eq.(15) it is straightforward to derive the expansions
me’_ @’ 1 - for IT" and IT"E,
~ 4q° o= 2_(]21_[2_ APl (12) The first observation is that up to zeroth ordergjrthe

local-field correction$Eg. (15)] induced by momentum con-
Integration via the chemical potential yields the higher mo-servation lead to an exact cancellation of the effect of colli-
ments of the polarization function sions in Eq.(9) since we have
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which shows that we have to go to the next ordeqias ST ey, - Memmin C0)) |
done in Eq.(16). . n-j(~q)

Also one recognizes that the inclusion of energy conser-
vation leads only to corrections in next order @f with
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respect tolI". Moreover, we observe that this correction =
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even vanishes if we employ the zero temperature limit. For g ;9
zero temperature we ha¥e=3en/5 andd,,n=3n/2¢; with & 10 £ .
the Fermi energy; such that E
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(18 FIG. 1. The imaginary part of the polarization function versus

. . . scaled energy for the Mermin formul@) respecting only density
Using Eq.(16) one can write all the effects of correlation conservation(black-solid ling compared with the full expression

including conservation laws in one common local-field factor(15) respecting energy, momentum, and density conservétiay-
solid line). As an exploratory example hot symmetric nuclear matter

~ 1 1 1 1 E ) (T=1 MeV,n,=0.16 fm 3 with the wave vector g
G= Hn,i,E_ H_o: T 1Sier\on n +0(q°) =0.23 fm ! corresponding tdPb, has been chosen. Similar fig-
H ures are obtained for plasma systems. The imaginary part of the
1 8e; response function is depicted in the inlay without logarithmic plot.
=1"70r 150 +o(q%), (19 The long-wave length expansions for the Merrt® and the com-
plete formula(15) are given by corresponding dotted lines. To
where the last line is valid for zero temperature. guide the eye, the high-frequency limi@3) and(22) are given by

This allows in turn to give the small wave vector expres-long'daShed lines.

sion of the polarization function itself in a Drude-like expres-

sion
gence of first energy weighted sum rule for the full expres-
) nq2 sion (15) we want to point out that the ~° decrease for high
lim [T™5(g, ) = 5 = — frequencies allows us to fulfill higher-order sum rules. The
q—0 Moo+ (Ng/Mw)ReG(w)+i/7(w)]

analytical discussion and proof similar to RT) will be

(20 devoted to a forthcoming work.
with the modified frequency-dependent relaxation rate In Fig. 1 we compare the imaginary part of the polariza-
tion function for the density and momentum approximation
(gray lines with the Mermin(density approximation(dark
lines) as function of energy with the corresponding limiting
cases.
similar to Ref.[1]. The advantage here is that we have Fjrst we want to discuss the corresponding complete ex-
Eimple explicit formulas for the dynamical local-field factor pressions(solid lines of the Mermin formula(9) and the
G and the modified relaxation rate, while in Rdfs] and[8] formula (15) including momentum, density, and energy con-
this could only be given in static approximation and involv- servation. One recognizes that the low-frequency limit agrees
ing complicated integrals. If we had used simply the Merminpetween Mermir{density formula and the complete formula

~71_n_qz -
7= imG(w) (21)

formula (9) we would have obtained=r and ReG=0. while the high-frequency limit shows the characteristic dif-
In particular we find for the imaginary part ferent behavior of» 3 for Mermin (23) and a stronger de-
crease ofo~° for the complete expression as have been seen
_ NiE ng* [ 1 2E 8eing? in Eq. (22). The high-frequency expressions according to
lim ImI1™5(q, w) = - m(ﬂ_ F) = Isws.m?’  EGs.(22) and(23) are given by corresponding dashed lines
o . (22 in the figure.
Let us now examine the long-wavelength lim{0) of
>4 the Mermin formula(9) and the one including momentum,
lim Im T1"(q, ) = — nq (23) density,_ and energy conservatitib) plotteo! in the figure as
0ot w3tm? dotted lines. We see that the long-wave limit of the Mermin

formula approximates the high-frequency behavior of the
showing a characteristic different high-frequency behaviorMermin formula(9) nicely but fails for low frequencies. In
While in Ref. [2] we have checked the improved conver- contrast, the long-wavelength expansion of the expression
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including momentum conservatiof®0), shows an excellent agreement of the expressig@0) with the full result (15)
agreement with the complete expressi¢hb) for both  underlines also the strength of local-field corrections in con-
thehigh-and low-frequency limit. Please remember that irstructing approximate formulas for the response functions.

the latter expressiof20) the corrections of ordey? drop out The valuable comments by J. D. Franklai@ANIL) are
and it is effectively of the ordeg*. The nice numerical gratefully acknowledged.
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