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Momentum conservation and local field corrections for the response of interacting Fermi gases
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We reanalyzed the recently derived response function for interacting systems in relaxation-time approxima-
tion respecting density, momentum, and energy conservation. We find that momentum conservation leads
exactly to the local-field corrections for both cases respecting only density conservation and respecting density
and energy conservation. This rewriting simplifies the former formulas dramatically. We discuss the small
wave vector expansion and find that the response function shows a high-frequency dependence ofv25, which
allows to fulfill higher-order sum rules. The momentum conservation also resolves a puzzle about the conduc-
tivity, which should only be finite in multicomponent systems.

PACS number~s!: 05.30.Fk, 21.60.Ev, 24.30.Cz, 24.60.Ky
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Recently the improvement of the response function in
teracting quantum systems has regained much interest@1,2#.
This quantity is important in a variety of fields and describ
the induced density variation if the system is externally p
turbed:dn5xVext. As an example, for an interacting syste
with potentialV the conductivity can be calculated from th
response function via

Res52
V

4p
v Im x. ~1!

One of the most fruitful concepts to improve the respon
functions including correlations are the local-field corre
tions G

x5
x0

11Gx0
, ~2!

see Refs.@1,3,4# and references therein.
On the other hand, there exists an extremely useful fo

of the response function when the interactions are abbr
ated in the relaxation-time approximationt respecting den-
sity conservation@5#. One of the advantages of the resultin
Mermin formula~9! is that it leads to the Drude -like form o
the dielectric function in the long wavelength limit

e512Vx512
vp

2

vS v1
i

t
D ~3!

with the plasma frequencyvp for the Coulomb potentialV
from which follows the conductivity

Res5
ne2t

m~11v2t2!
55

ne2t

m
1o~v!

ne2

mv2t
1oS 1

v
D . ~4!

However one should note that this formula is valid only f
the extension to a multicomponent system@6# ~at least a
PRE 621063-651X/2000/62~3!/4382~4!/$15.00
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two-component system! since it makes no sense to speak
conductivity in a single-component system where the c
ductivity should be infinite. Clearly the Mermin formul
does not distinguish these cases and cannot be sufficie
describe the response. Therefore we will show that the in
sion of additional momentum conservation will repair th
defect~22! and will lead to a conductivity

Res5
ne2t

m~11v2t2!

nq2

mv2 S 1

]mn
2

2E

n2 D , ~5!

which shows indeed for the static limit a diverging behav
in contrast to Eq.~4!.

There are two distinguishable cases, the single-compo
case where we have to include momentum conservation
obtain divergent conductivity and the multicomponent ca
where we should expect Mermin-like formulas in order
render the conductivity finite. In order to bring these tw
extreme cases together the response function for multic
ponent systems should be considered@6#.

In this paper we want to restrict to the one-compon
situation. In Ref.@2# we have derived the density, curren
and energy responsex,xJ ,xE of an interacting quantum sys
tem

S dn

d“J

dE
D 5S x

xJ

xE

D Vext[XS 1

0

0
D Vext[Xnext ~6!

to the external perturbationVext provided the density, mo-
mentum, and energy are conserved. The interacting sys
has been described by the quantum kinetic equation for
density operator in the relaxation-time approximation wh
the relaxation is considered with respect to the local-den
operator or the corresponding local equilibrium distributi
function. This local equilibrium is given by a local chemic
potentialm, a local temperatureT, and a local momentumQ
of mass motion. These local quantities are specified by
requirement that the expectation values for density, mom
tum, and energy are the same when calculated from a l
distribution function or performed with the density operato
4382 ©2000 The American Physical Society
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The density response functions have been expresse
Ref. @2# for the inclusion of successively more conservati
laws in terms of polarization functionsP5$P,Pn ,PE% and
have the general form

X5P~12VP!21 ~7!

due to the induced mean fields that can have density—
momentum—dependent Skyrme form.

When we note the free response function or Lindhard
larization function without collisions as

P05sE dp

~2p!3

f 0~p1q/2!2 f 0~p2q/2!

pq

m
2v2 i0

~8!

with finite temperature Fermi functionsf 0, the inclusion of
only density conservation leads to the Mermin polarizat
@5#

Pn~q,v!5
P0~q,v1 i /t!

12
1

12 ivt
@12P0~q,v1 i /t!/P0~q,0!#

5~12 ivt!

g1S v1
i

t Dg1~0!

h1
, ~9!

where abbreviations are given below in Eq.~12!. If we in-
clude also the energy conservation we obtain@2# an addi-
tional term to Eq.~9!

Pn,E~v!5~12 ivt!S g1S v1
i

t Dg1~0!

h1

2vt i
@heg1~0!2h1ge~0!#2

h1~he
22heeh1!

D , ~10!

where we use the abbreviation

hf5gfS v1
i

t D2vt igf~0!. ~11!

The different occurring correlation functions can be wr
ten in terms of moments of the usual Lindhard polarizat
function ~8! as follows@2#:

g15P0 ,ge52
n

2
1

mv2

2q2 P01
1

2m
P̃2 ,

gee52
7

6
E2

nq2

16m S 11
4m2v2

q4 D
2

m2v4

4q4 P̃02
v2

2q2P̃22
1

4m2P̃4 . ~12!

Integration via the chemical potential yields the higher m
ments of the polarization function
in

nd

-

n

n

-

P̃252mE
2`

m

dm8P0 ,

P̃452~2m!2E
2`

m

dm8E
2`

m8
dm9P0 ~13!

and the density and energy are given by

n5E dp

~2p\!3 f 0~p!,

E5E dp

~2p\!3

p2

2m
f 0~p!. ~14!

For the inclusion of additional momentum conservation
formulas ~9! or ~10! we obtain now a tremendous simplifi
cation by observing that the formulas given in Ref.@2# can
be rewritten as

1

Pn,j~v!
2

1

Pn~v!
5

1

Pn,j,E~v!
2

1

Pn,E~v!
52

iv

t

m

nq2 [G.

~15!

This shows that the inclusion of momentum conservat
leads to nothing but the local-field correction with the sa
form G for both cases, the inclusion of only density cons
vationandadditional energy conservation. We want to po
out that this result is valid for any frequency and tempe
ture. Formula~15! is the main result of this paper since
leads to a tremendous simplification. To see the advanta
more clearly we discuss now limiting cases.

The long wavelength expansion is particularly importa
for the classical limit and for the discussion of sum rules@7#.
Since the discussion above has shown the advantage of
cussing the inverse polarization function instead of the
larization function itself we proceed and give the expans
for the inverse polarization functions~8!, ~9!, and~10!

1

P0
5

mv2

nq2 2
2E

n2 1o~q2!,

1

Pn
5

mvS v1
i

t D
nq2

2S i

vt

1

]mn
1

2E

n2 D v

v1
i

t

1o~q2!,

1

Pn,E
5

1

Pn
2

nq2

18m S 9

]mn
2

10E

n2 D 2 v

S v1
i

t D 3 1o~q4!.

~16!

From Eq.~15! it is straightforward to derive the expansion
for Pnj andPnjE.

The first observation is that up to zeroth order inq the
local-field corrections@Eq. ~15!# induced by momentum con
servation lead to an exact cancellation of the effect of co
sions in Eq.~9! since we have
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1

Pn
2

1

P0
52G1o~q0!, ~17!

which shows that we have to go to the next order inq as
done in Eq.~16!.

Also one recognizes that the inclusion of energy cons
vation leads only to corrections in next order ofq2 with
respect toPn. Moreover, we observe that this correctio
even vanishes if we employ the zero temperature limit.
zero temperature we haveE53e fn/5 and]mn53n/2e f with
the Fermi energye f such that

1

PnjE
5

1

Pnj
1o~q4!5

mv2

nq2 2
2e f

15n

9v1
5i

t

v1
i

t

1o~q4!.

~18!

Using Eq. ~16! one can write all the effects of correlatio
including conservation laws in one common local-field fac

G̃5
1

Pn,j,E
2

1

P0
52

1

12 ivt S 1

]mn
2

2E

n2 D1o~q2!

5
1

12 ivt

8e f

15n
1o~q4!, ~19!

where the last line is valid for zero temperature.
This allows in turn to give the small wave vector expre

sion of the polarization function itself in a Drude-like expre
sion

lim
q→0

Pn,j,E~q,v!5
nq2

mv@v1~nq2/mv!ReG̃~v!1 i / t̃~v!#
~20!

with the modified frequency-dependent relaxation rate

t̃215
nq2

mv
Im G̃~v! ~21!

similar to Ref. @1#. The advantage here is that we ha
simple explicit formulas for the dynamical local-field fact
G̃ and the modified relaxation rate, while in Refs.@1# and@8#
this could only be given in static approximation and invo
ing complicated integrals. If we had used simply the Merm
formula ~9! we would have obtainedt̃5t and ReG̃50.

In particular we find for the imaginary part

lim
v→`

Im Pn,j,E~q,v!52
n2q4

v5tm2 S 1

]mn
2

2E

n2 D52
8e fnq4

15v5tm2
,

~22!

lim
v→`

Im Pn~q,v!52
n2q4

v3tm2
~23!

showing a characteristic different high-frequency behav
While in Ref. @2# we have checked the improved conve
r-

r

r

-

r.

gence of first energy weighted sum rule for the full expre
sion~15! we want to point out that thev25 decrease for high
frequencies allows us to fulfill higher-order sum rules. T
analytical discussion and proof similar to Ref.@7# will be
devoted to a forthcoming work.

In Fig. 1 we compare the imaginary part of the polariz
tion function for the density and momentum approximati
~gray lines! with the Mermin~density! approximation~dark
lines! as function of energy with the corresponding limitin
cases.

First we want to discuss the corresponding complete
pressions~solid lines! of the Mermin formula~9! and the
formula ~15! including momentum, density, and energy co
servation. One recognizes that the low-frequency limit agr
between Mermin~density! formula and the complete formul
while the high-frequency limit shows the characteristic d
ferent behavior ofv23 for Mermin ~23! and a stronger de
crease ofv25 for the complete expression as have been s
in Eq. ~22!. The high-frequency expressions according
Eqs. ~22! and ~23! are given by corresponding dashed lin
in the figure.

Let us now examine the long-wavelength limits~20! of
the Mermin formula~9! and the one including momentum
density, and energy conservation~15! plotted in the figure as
dotted lines. We see that the long-wave limit of the Merm
formula approximates the high-frequency behavior of
Mermin formula~9! nicely but fails for low frequencies. In
contrast, the long-wavelength expansion of the express

FIG. 1. The imaginary part of the polarization function vers
scaled energy for the Mermin formula~9! respecting only density
conservation~black-solid line! compared with the full expression
~15! respecting energy, momentum, and density conservation~gray-
solid line!. As an exploratory example hot symmetric nuclear mat
(T51 MeV,n050.16 fm23) with the wave vector q
50.23 fm21 corresponding toPb, has been chosen. Similar fig
ures are obtained for plasma systems. The imaginary part of
response function is depicted in the inlay without logarithmic pl
The long-wave length expansions for the Mermin~9! and the com-
plete formula ~15! are given by corresponding dotted lines. T
guide the eye, the high-frequency limits~23! and~22! are given by
long-dashed lines.
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including momentum conservations~20!, shows an excellen
agreement with the complete expression~15! for both
thehigh-and low-frequency limit. Please remember that
the latter expression~20! the corrections of orderq2 drop out
and it is effectively of the orderq4. The nice numerical
s.
n

agreement of the expression~20! with the full result ~15!
underlines also the strength of local-field corrections in c
structing approximate formulas for the response functio
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